| 8 | 0 | 41 |
| 下载次数 | 被引频次 | 阅读次数 |
信息物理系统(cyber-physical systems,CPS)融合视角下主动配电网状态估计(state estimation,SE)易遭受黑客发起的恶意攻击,这将影响对系统运行状态的准确感知。为有效应对配电网中的虚假信息注入攻击(false data injection attack,FDIA),提出了一种面向配电网FDIA检测的预测辅助SE方法。首先,提出了一般不完美FDIA模型,通过引入随机扰动模拟实际的攻击行为,并为后续的检测方法提供理论支持。其次,采用量测变换技术对分散的量测数据进行集中处理,以解决配电网中量测精度不足的问题。在此基础上,提出了一种融入多源量测数据的配电网预测辅助状态估计算法,该算法结合自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)进行状态修正,并利用投影统计(projection statistics,PS)有效检测和抑制破坏性异常值,从而提升配电网对FDIA的适应性和抗干扰能力。最后,在改进的IEEE 33节点测试系统中进行了仿真验证,结果表明,所提出的方法显著提高了配电网状态估计的精度,并增强了FDIA检测的准确性,为配电网的安全稳定运行提供了重要的技术支持。
Abstract:The distribution network state estimation(SE)combined with cyber-physical systems(CPS)faces challenges such as data explosion and malicious attacks from hackers,affecting the accurate perception of the system operation state. A dynamic SE method for false data injection attack(FDIA)detection is proposed to effectively address FDIAs in distribution networks.Firstly,a general imperfect FDIA model is introduced,which simulates real-world attack behavior through random disturbances,providing a theoretical foundation for subsequent detection methods. Secondly,a measurement transformation technique is employed to centralize dispersed measurement data,addressing the issue of inadequate measurement accuracy in distribution networks.Building on this foundation,a dynamic state estimation algorithm for distribution networks is proposed,which integrates multi-source measurement data and leverages anadaptive unscented Kalman filter(AUKF)for state correction.Additionally,the projection statistics(PS)method effectively detects and suppresses disruptive outliers,enhancing the network's adaptability and robustness to FDIA. Finally,simulations conducted on an improved IEEE 33-node test system demonstrate that the proposed method significantly improves state estimation accuracy and enhances FDIA detection accuracy,providing essential technical support for the secure and stable operation of distribution networks.
[1]王栋,梁正堂,李玉敦,等.基于广义状态估计的拓扑错误快速识别方法[J].山东电力技术,2023,50(2):26-32.WANG Dong, LIANG Zhengtang, LI Yudun, et al. Fast identification method of topology errors based on generalized state estimation[J].Shandong Electric Power,2023,50(2):26-32.
[2]冯振,阎俏,迟青青,等.综合能源网络建模与运维技术研究综述[J].山东电力技术,2024,51(5):9-18.FENG Zhen,YAN Qiao,CHI Qingqing,et al.A review of modeling,operation and maintenance technologies for multi-energy coupled integrated energy network[J].Shandong Electric Power,2024,51(5):9-18.
[3]尚宇炜,周莉梅,马钊,等.数字化主动配电系统初探[J].中国电机工程学报,2022,42(5):1760-1773.SHANG Yuwei,ZHOU Limei,MA Zhao,et al.Preliminary study of digitalized active distribution systems[J]. Proceedings of the CSEE,2022,42(5):1760-1773.
[4]王琦,邰伟,汤奕,等.面向电力信息物理系统的虚假数据注入攻击研究综述[J].自动化学报,2019,45(1):72-83.WANG Qi,TAI Wei,TANG Yi,et al. A review on false data injection attack toward cyber-physical power system[J]. Acta Automatica Sinica,2019,45(1):72-83.
[5]伊娜,徐建军,陈月,等.电力CPS多阶段低代价虚假数据注入攻击方法[J].浙江电力,2023,42(11):39-47.YI Na,XU Jianjun,CHEN Yue,et al.A multi-stage low-cost false data injection attack method for power CPS[J]. Zhejiang Electric Power,2023,42(11):39-47.
[6]陈鑫.基于数据分布的不平衡数据混合采样研究[D].太原:山西财经大学,2021.
[7]王钊,王勃,冯双磊,等.区域多风电场功率的分位数回归概率预测方法[J].电网技术,2020,44(4):1368-1375.WANG Zhao,WANG Bo,FENG Shuanglei,et al. Probabilistic forecasts based on quantile regression for regional wind farms[J].Power System Technology,2020,44(4):1368-1375.
[8]童家麟,吕洪坤,蔡洁聪,等.国内天然气分布式能源发展现状与应用前景综述[J].浙江电力,2018,37(12):1-7.TONG Jialin,LYU Hongkun,CAI Jiecong,et al. Review on development and application prospect of domestic natural gas distributed energy resources[J].Zhejiang Electric Power,2018,37(12):1-7.
[9]常颢,徐俊俊,王晓兵,等.基于对抗性自动编码器的城市配电网虚假数据注入攻击检测[J].山东电力技术,2024,51(3):18-26.CHANG Hao,XU Junjun,WANG Xiaobing,et al.Detection of false data injection attack in urban distribution network based on adversarial autoencoder[J]. Shandong Electric Power,2024,51(3):18-26.
[10]黄崇鑫,洪明磊,伏帅,等.考虑虚假数据注入攻击的有源配电网分布式状态估计[J].电力工程技术,2022,41(3):22-31.HUANG Chongxin,HONG Minglei,FU Shuai,et al. Distributed state estimation of active distribution network considering false data injection attack[J]. Electric Power Engineering Technology,2022,41(3):22-31.
[11]杨德昌,王雅宁,李朝霞,等.基于改进粒子滤波的综合能源系统预测辅助状态估计[J].电力工程技术,2022,41(6):172-181.YANG Dechang,WANG Yaning,LI Zhaoxia,et al. Forecastingaided state estimation of integrated energy systems based on improved particle filter[J]. Electric Power Engineering Technology,2022,41(6):172-181.
[12]黄冬梅,王一帆,胡安铎,等.融合无监督和有监督学习的虚假数据注入攻击检测[J].电力工程技术,2024,43(2):134-141.HUANG Dongmei,WANG Yifan,HU Anduo,et al. Detection method of false data injection attack based on unsupervised and supervised learning[J]. Electric Power Engineering Technology,2024,43(2):134-141.
[13]张全起,梅明伟.配电网故障区段定位的改进矩阵算法[J].山东电力技术,2018,45(8):72-75.ZHANG Quanqi,MEI Mingwei.Improved matrix algorithm for fault location in distribution network[J]. Shandong Electric Power,2018,45(8):72-75.
[14]刘晓,于光远,秦昌龙,等.针对虚假数据注入攻击的配电系统韧性提升[J].山东电力技术,2022,49(11):57-63.LIU Xiao,YU Guangyuan,QIN Changlong,et al. Resilience improvement of distribution system against false data injection attacks[J].Shandong Electric Power,2022,49(11):57-63.
[15] XUE D B,JING X R,LIU H Q. Detection of false data injection attacks in smart grid utilizing ELM-based OCON framework[J].IEEE Access,2019,7:31762-31773.
[16] ASHOK A,GOVINDARASU M,AJJARAPU V.Online detection of stealthy false data injection attacks in power system state estimation[J]. IEEE Transactions on Smart Grid,2018,9(3):1636-1646.
[17] ZU T,LI F Y. Self-attention spatio-temporal deep collaborative network for robust FDIA detection in smart grids[J]. CMESComputer Modeling in Engineering and Sciences,2024,141(2):1395-1417.
[18] WEI S H,WU Z J,XU J J,et al.Multiarea probabilistic forecastingaided interval state estimation for FDIA identification in power distribution networks[J]. IEEE Transactions on Industrial Informatics,2024,20(3):4271-4282.
[19] XU J J,WU Z J,ZHANG T F,et al. A secure forecasting-aided state estimation framework for power distribution systems against false data injection attacks[J].Applied Energy,2022,328:120107.
[20] ZHOU T L,XIAHOU K,ZHANG L L,et al.Real-time detection of cyber-physical false data injection attacks on power systems[J].IEEE Transactions on Industrial Informatics,2021,17(10):6810-6819.
[21] TIAN J W,WANG B H,WANG Z,et al.Joint adversarial example and false data injection attacks for state estimation in power systems[J]. IEEE Transactions on Cybernetics,2022,52(12):13699-13713.
[22] OBATA S,KOBAYASHI K,YAMASHITA Y.Sensor schedulingbased detection of false data injection attacks in power system state estimation[C]∥2021 IEEE International Conference on Consumer Electronics(ICCE).IEEE,2021:1-4.
[23]季亮,殷佳明,姜恩宇,等.基于混合量测状态估计的配电网故障定位方法[J].电力系统保护与控制,2024,52(12):58-68.JI Liang,YIN Jiaming,JIANG Enyu,et al.A fault location method based on hybrid measurement state estimation for a distribution network[J].Power System Protection and Control,2024,52(12):58-68.
[24]董一兵.基于改进鲁棒无迹卡尔曼滤波的电力系统分区状态估计[D].秦皇岛:燕山大学,2018.
[25] ZHAO J B,MILI L. Robust unscented Kalman filter for power system dynamic state estimation with unknown noise statistics[J].IEEE Transactions on Smart Grid,2019,10(2):1215-1224.
[26] LOFBERG J.YALMIP:a toolbox for modeling and optimization in MATLAB[C]∥2004 IEEE International Conference on Robotics and Automation.IEEE,2005:284-289.
[27] CPLEX IBM ILOG. V12.1:user’s manual for CPLEX[J].International Business Machines Corporation,2009,46(53):157.
[28]陈中,顾叮咚,郭庆.考虑全局相关性的主动配电网电压安全优化控制[J].电力系统自动化,2023,47(21):99-107.CHEN Zhong,GU Dingdong,GUO Qing.Optimization and control of voltage security in active distribution network considering global correlation[J]. Automation of Electric Power Systems,2023,47(21):99-107.
基本信息:
DOI:10.20097/j.cnki.issn1007-9904.240498
中图分类号:TM73
引用信息:
[1]张晟,姜宇森,林曈,等.计及虚假信息注入攻击检测的主动配电网预测辅助状态估计[J].山东电力技术,2025,52(11):42-51.DOI:10.20097/j.cnki.issn1007-9904.240498.
基金信息:
国家自然科学基金项目(52107101)~~