246 | 3 | 336 |
下载次数 | 被引频次 | 阅读次数 |
新型电力系统下,风力发电并网规模不断增加,大规模风力发电并网对风力发电参与电力系统调频的能力提出更高要求。目前,风电场主要通过释放风电机组转子动能、超速减载或附加储能装置等方式提高其调频能力。然而,以上调频方法存在调频期间捕获风能损失过大或储能配置成本过高等问题,影响风电场的频率调节效率。针对上述问题,提出利用高风速区风电机组的过载能力实现风电机组与储能系统一次频率协同调节的策略。首先计算风电机组的过载能力,其次优先将调节功率分配给高风速区域的风电机组,再将调节功率分配给储能系统,实现储能系统与风电机组的协同。调频结束后,风电机组利用其过载能力帮助储能系统回收能量。实例分析表明,该策略能够提高风电场的频率调节效率。
Abstract:In the new power system,the scale of wind power integration is constantly increasing,and large-scale wind power integration has put forward higher requirements for the ability of wind power to participate in power system frequency regulation.Currently,wind farms mainly enhance their frequency regulation ability by releasing the kinetic energy of wind turbine rotors,speed reduction load or additional energy storage devices.However,the above frequency regulation methods have problems such as excessive loss of wind energy capture during frequency regulation or high energy storage configuration costs,which affect the frequency regulation efficiency of wind farms. In response to the above problems,a strategy is proposed to achieve primary frequency coordinated regulation between wind turbines and energy storage systems by utilizing the overload capacity of wind turbines in high-wind-speed areas.Firstly,the over-load capacity of wind turbines is calculated.Secondly,the regulation power is preferentially allocated to wind turbines in high wind speed areas,and then allocated to the energy storage system to achieve synergy between the energy storage system and the wind turbines.After the frequency regulation is completed,the wind turbine units help the energy storage system recover energy by utilizing their overload capacity.Case studies show that this strategy can improve the frequency regulation efficiency of wind farms.
[1]陈宇航,王刚,侍乔明,等.一种新型风电场虚拟惯量协同控制策略[J].电力系统自动化,2015,39(5):27-33.CHEN Yuhang,WANG Gang,SHI Qiaoming,et al. A new coordinated virtual inertia control strategy for wind farms[J].Automation of Electric Power Systems,2015,39(5):27-33.
[2]赵晶晶,吕雪,符杨,等.基于双馈感应风力发电机虚拟惯量和桨距角联合控制的风光柴微电网动态频率控制[J].中国电机工程学报,2015,35(15):3815-3822.ZHAO Jingjing,LYU Xue,FU Yang,et al. Dynamic frequency control strategy of wind/photovoltaic/diesel microgrid based on DFIG virtual inertia control and pitch angle control[J].Proceedings of the CSEE,2015,35(15):3815-3822.
[3]程冲,杨欢,曾正,等.虚拟同步发电机的转子惯量自适应控制方法[J].电力系统自动化,2015,39(19):82-89.CHENG Chong,YANG Huan,ZENG Zheng,et al. Rotor inertia adaptive control method of VSG[J].Automation of Electric Power Systems,2015,39(19):82-89.
[4]付媛,王毅,张祥宇,等.变速风电机组的惯性与一次调频特性分析及综合控制[J].中国电机工程学报,2014,34(27):4706-4716.FU Yuan,WANG Yi,ZHANG Xiangyu,et al. Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J].Proceedings of the CSEE,2014,34(27):4706-4716.
[5]张祥宇,沈文奇,林毅,等.同步耦合双馈风机的虚拟惯量优化控制技术[J].电网与清洁能源,2022,38(9):126-133.ZHANG Xiangyu,SHEN Wenqi,LIN Yi,et al. Virtual inertia control optimization of synchronous coupled doubly-fed induction wind generator[J].Power System and Clean Energy,2022,38(9):126-133.
[6]侍乔明,王刚,马伟明,等.直驱永磁风电机组虚拟惯量控制的实验方法研究[J].中国电机工程学报,2015,35(8):2033-2042.SHI Qiaoming,WANG Gang,MA Weiming,et al.An experimental study method of D-PMSG with virtual inertia control[J].Proceedings of the CSEE,2015,35(8):2033-2042.
[7]田新首,王伟胜,迟永宁,等.基于双馈风电机组有效储能的变参数虚拟惯量控制[J].电力系统自动化,2015,39(5):20-26.TIAN Xinshou,WANG Weisheng,CHI Yongning,et al. Variable parameter virtual inertia control based on effective energy storage of DFIG-based wind turbines[J]. Automation of Electric Power Systems,2015,39(5):20-26.
[8]李和明,张祥宇,王毅,等.基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J].中国电机工程学报,2012,32(7):32-39.LI Heming,ZHANG Xiangyu,WANG Yi,et al. Virtual inertia control of DFIG-based wind turbines based on the optimal power tracking[J].Proceedings of the CSEE,2012,32(7):32-39.
[9]李霞林,郭力,王成山,等.直流微电网关键技术研究综述[J].中国电机工程学报,2016,36(1):2-17.LI Xialin,GUO Li,WANG Chengshan,et al. Key technologies of DC microgrids:an overview[J].Proceedings of the CSEE,2016,36(1):2-17.
[10]郑永伟,陈民铀,李闯,等.自适应调节下垂系数的微电网控制策略[J].电力系统自动化,2013,37(7):6-11.ZHENG Yongwei,CHEN Minyou,LI Chuang,et al. A microgrid control strategy based on adaptive drooping coefficient adjustment[J].Automation of Electric Power Systems,2013,37(7):6-11.
[11]李少林,王伟胜,张兴,等.风力发电对系统频率影响及虚拟惯量综合控制[J].电力系统自动化,2019,43(15):64-70.LI Shaolin,WANG Weisheng,ZHANG Xing,et al.Impact of wind power on power system frequency and combined virtual inertia control[J].Automation of Electric Power Systems,2019,43(15):64-70.
[12]乔颖,郭晓茜,鲁宗相,等.考虑系统频率二次跌落的风电机组辅助调频参数确定方法[J].电网技术,2020,44(3):807-815.QIAO Ying,GUO Xiaoqian,LU Zongxiang,et al.Parameter setting of auxiliary frequency regulation of wind turbines considering secondary frequency drop[J].Power System Technology,2020,44(3):807-815.
[13] GOWAID I A,EL-ZAWAWI A,EL-GAMMAL M. Improved inertia and frequency support from grid-connected DFIG wind farms[C]?2011 IEEE/PES Power Systems Conference and Exposition.IEEE,2011:1-9.
[14]张昭遂,孙元章,李国杰,等.超速与变桨协调的双馈风电机组频率控制[J].电力系统自动化,2011,35(17):20-25.ZHANG Zhaosui,SUN Yuanzhang,LI Guojie,et al. Frequency regulation by doubly fed induction generator wind turbines based on coordinated overspeed control and pitch control[J].Automation of Electric Power Systems,2011,35(17):20-25.
[15]迟永宁,关宏亮,王伟胜,等.SVC与桨距角控制改善异步机风电场暂态电压稳定性[J].电力系统自动化,2007,31(3):95-100.CHI Yongning,GUAN Hongliang,WANG Weisheng,et al.Enhancement of transient voltage stability of induction generator based wind farm by SVC and pitch control[J]. Automation of Electric Power Systems,2007,31(3):95-100.
[16] WU Z S,YU J L,PENG X Y. Wind power frequency regulation method based on sub-optimal power tracking in high wind speed range[J]Journal of Electrical Engineering&Technology,2013,28(5):112-119.
[17] MENG X H,ZHAO X,FENG J,et al.Frequency regulation control strategy for wind power plants under limited power output[J].Smart Grid,2015,3(3):218-222.
[18]祝青,沈晨姝,李木子,等.大型集中式风电储能系统的配置及收益模式研究[J].电工技术,2022(17):4-8.ZHU Qing,SHEN Chenshu,LI Muzi,et al. Research on configuration and revenue model of large centralized wind energy storage system[J].Electric Engineering,2022(17):4-8.
[19]谢志佳,李德鑫,王佳蕊,等.储能系统参与电力系统调频应用场景及控制方法研究[J].热力发电,2020,49(8):117-125.XIE Zhijia,LI Dexin,WANG Jiarui,et al. Application scenarios and control method research of energy storage system participating in power system frequency modulation[J]. Thermal Power Generation,2020,49(8):117-125.
[20]郑许林,张雅楠,朱瑛,等.基于消纳型抽水蓄能电站的风电-抽水蓄能联合运行特性分析[J].内蒙古电力技术,2023,41(5):69-74.ZHENG Xulin,ZHANG Yanan,ZHU Ying,et al.Analysis of wind power-pumped storage joint operation characteristics based on accommodating-type pumped storage power station[J]. Inner Mongolia Electric Power,2023,41(5):69-74.
[21]付文豪,张继红,谢波,等.混合储能参与风力发电场的调频控制策略研究[J].电工技术,2023(22):82-86.FU Wenhao,ZHANG Jihong,XIE Bo,et al.Control strategy of wind farm frequency regulation with hybrid energy storage[J]. Electric Engineering,2023(22):82-86.
[22]郑华,伏睿,张颖,等.构网型储能系统与风力发电的协同控制研究[J].电力信息与通信技术,2023,21(11):48-54.ZHENG Hua,FU Rui,ZHANG Ying,et al. Research on collaborative control of the grid-forming electrical storage system with the wind power plant[J]. Electric Power Information and Communication Technology,2023,21(11):48-54.
[23]徐敏,李万伟,张中丹,等.风光储联合发电系统并网优化研究[J].电气时代,2023(11):46-50.XU Min,LI Wanwei,ZHANG Zhongdan,et al. Study on gridconnected optimization of wind-solar-storage combined power generation system[J].Electric Age,2023(11):46-50.
[24]张继红,崔天祥,熊伟,等.飞轮储能参与风场调频控制研究[J].浙江电力,2022,41(8):49-56.ZHANG Jihong,CUI Tianxiang,XIONG Wei,et al. Research on participation of flywheel energy storage in wind farm frequency regulation control[J]. Zhejiang Electric Power,2022,41(8):49-56.
[25]陈仲伟,邹旭东,陈耀红,等.带储能的双馈风力发电系统控制策略[J].电力系统自动化,2014,38(18):1-5.CHEN Zhongwei,ZOU Xudong,CHEN Yaohong,et al. A control strategy for doubly-fed wind power generation system with energy storage[J].Automation of Electric Power Systems,2014,38(18):1-5.
基本信息:
DOI:10.20097/j.cnki.issn1007-9904.2024.10.001
中图分类号:TM614
引用信息:
[1]曲建璋,丁浩天,王毓琦等.计及风电机组短时过载能力的风电场多机协同频率控制策略[J].山东电力技术,2024,51(10):1-9.DOI:10.20097/j.cnki.issn1007-9904.2024.10.001.
基金信息:
国网山东省电力公司科技项目“提升新型电力系统频率安全的新能源主动支撑技术研究与应用”(520626220080)~~