国网山东省电力公司电力科学研究院;
分布式光伏高渗透率接入导致电网容量波动,给电网安全稳定运行及供电带来巨大压力。针对上述问题,提出计及资源差异特性的分布式光伏与储能聚合运营优化方法。在构建分布式光伏与储能聚合运营优化系统模型的基础上,考虑储能资源及其消纳模式的差异性,将分布式光伏与储能聚合优化问题转化为最小化联合运营成本问题。针对光伏出力和储能充放电功率不确定性、优化约束复杂、可行域分裂等问题,提出分布式光伏与储能聚合运营自适应演进策略,引入自适应缩放参数控制差分矢量缩放,提高算法性能,提升配电网光伏消纳能力,改善电网运行状态。仿真结果表明,相较于单一储能运营模式,所提算法的聚合运营商收益分别提升45.66%和23.03%。
201 | 1 | 138 |
下载次数 | 被引频次 | 阅读次数 |
[1]董军,彭诗程.双碳目标下我国储能发展及市场参与激励政策建议[J].华北电力大学学报(社会科学版),2023(3):19-27.DONG Jun,PENG Shicheng.Suggestions on incentive policies for energy storage development and market participation under double carbon targets in China[J].Journal of North China Electric Power University(Social Sciences),2023(3):19-27.
[2]葛罗,冯煊,胡凯,等.新型电力系统下空调负荷聚合建模及可调控潜力评估[J].浙江电力,2023,42(4):45-53.GE Luo,FENG Xuan,HU Kai,et al. Air conditioning load aggregation modeling and the schedulable potential evaluation in the context of new-type power system[J].Zhejiang Electric Power,2023,42(4):45-53.
[3] KIM G G,LEE W,BHANG B G,et al. Fault detection for photovoltaic systems using multivariate analysis with electrical and environmental variables[J].IEEE Journal of Photovoltaics,2021,11(1):202-212.
[4]陈文进,朱峰,张童彦,等.基于AFSA-BP神经网络的光伏功率预测方法[J].浙江电力,2022,41(4):7-13.CHEN Wenjin,ZHU Feng,ZHANG Tongyan,et al.A photovoltaic power prediction method based on AFSA-BP neural network[J].Zhejiang Electric Power,2022,41(4):7-13.
[5]丛鹏伟,唐巍,娄铖伟,等.含高渗透率可再生能源的主动配电网两阶段柔性软开关与联络开关协调优化控制[J].电工技术学报,2019,34(6):1263-1272.CONG Pengwei,TANG Wei,LOU Chengwei,et al. Two-stage coordination optimization control of soft open point and tie switch in active distribution network with high penetration renewable energy generation[J]. Transactions of China Electrotechnical Society,2019,34(6):1263-1272.
[6] HASHEMI S,?STERGAARD J,DEGNER T,et al. Efficient control of active transformers for increasing the PV hosting capacity of LV grids[J]. IEEE Transactions on Industrial Informatics,2017,13(1):270-277.
[7]刘芳芳,吕林,刘友波,等.高渗透清洁能源的城市高压配电网转供调度策略[J].电力系统保护与控制,2020,48(11):1-9.LIU Fangfang,LüLin,LIU Youbo,et al. Transfer scheduling strategy for urban high-voltage distribution network with highlypenetrated renewable energy[J]. Power System Protection and Control,2020,48(11):1-9.
[8]李洁,孙宏宇,许椿凯,等.参与新型电力系统需求响应的分布式储能资源管理与策略研究[J].供用电,2022,39(2):29-35.LI Jie,SUN Hongyu,XU Chunkai,et al. Research on distributed energy storage resource management and strategy participating in demand response of new power systems[J]. Distribution&Utilization,2022,39(2):29-35.
[9] SHI Z D,WANG W S,HUANG Y H,et al. Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control[J]. CSEE Journal of Power and Energy Systems,2022,8(1):95-104.
[10]付宇,白浩,李跃,等.面向高比例光伏消纳的低压交直流混合配电网时-空协调优化方法[J].南方电网技术,2023,17(1):84-93.FU Yu,BAI Hao,LI Yue,et al. Spatial-temporal coordinated optimization method of low voltage hybrid AC/DC distribution network for accommodation of high-proportion PVs[J]. Southern Power System Technology,2023,17(1):84-93.
[11]宋欣睿,贾燕冰,韩肖清,等.园区光储多场景协同优化运行策略[J].现代电力,2022,39(6):720-729.SONG Xinrui,JIA Yanbing,HAN Xiaoqing,et al. Cooperative optimization control method for photovoltaic and energy storage in photovoltaic zone to participate in multiple application scenarios[J].Modern Electric Power,2022,39(6):720-729.
[12]叶琳浩,申展,许峰,等.考虑光伏不确定性和时序相关性的分布鲁棒光储协同优化配置方法[J].南方电网技术,2023,17(4):132-143.YE Linhao,SHEN Zhan,XU feng,et al. Distributionally robust collaborative optimal allocation method of photovoltaic and energy storage considering photovoltaic uncertainty and temporal correlation[J].Southern Power System Technology,2023,17(4):132-143.
[13]杨龙,张沈习,程浩忠,等.区域低碳综合能源系统规划关键技术与挑战[J].电网技术,2022,46(9):3290-3304.YANG Long,ZHANG Shenxi,CHENG Haozhong,et al. Regional low-carbon integrated energy system planning:key technologies and challenges[J].Power System Technology,2022,46(9):3290-3304.
[14] ZANDAVI S M,CHUNG V Y Y,ANAISSI A. Stochastic dual simplex algorithm:a novel heuristic optimization algorithm[J].IEEE Transactions on Cybernetics,2021,51(5):2725-2734.
[15]刘斌,谈竹奎,唐赛秋,等.基于数据预测启发式算法的光伏电池参数识别[J].电力系统保护与控制,2021,49(23):72-79.LIU Bin,TAN Zhukui,TANG Saiqiu,et al. Photovoltaic cell parameter extraction using data prediction based on a metaheuristic algorithm[J].Power System Protection and Control,2021,49(23):72-79.
[16] DEMOLLI H,DOKUZ A S,ECEMIS A,et al. Location-based optimal sizing of hybrid renewable energy systems using deterministic and heuristic algorithms[J].International Journal of Energy Research,2021,45(11):16155-16175.
[17]徐同庆,王树彪,赵浩君.计及光伏消纳与光储充配置的配电网联合优化策略[J/OL].电气工程学报:1-10[2024-02-21].http://kns.cnki.net/kcms/detail/10.1289.TM.20230531.2203.008.html.XU Tongqing,WANG Shubiao,ZHAO Haojun. The predictivecontrol optimization method for park integrated energy system considering the high penetration of photovoltaics and deep reinforcement learning[J/OL].Journal of Electrical Engineering:1-10[2024-02-21]. http://kns. cnki. net/kcms/detail/10.1289.TM.20230531.2203.008.html.
[18]孙丰杰,汲广军,撖奥洋,等.考虑安全约束的地区电网精益化源网荷柔性互动控制系统[J].山东电力技术,2022,49(10):31-37.SUN Fengjie,JI Guangjun,HAN Aoyang,et al.Flexible interactive control system for source-grid-load in regional power grid considering security constraints[J]. Shandong Electric Power,2022,49(10):31-37.
[19]谭笑,华栋.源荷协同下计及电转氢和电动汽车的含风电配网日前优化调度[J].南方电网技术,2023,17(4):144-155.TAN Xiao,HUA Dong.Day-ahead optimal dispatch of wind power distribution network with P2H and EVs in consideration of sourceload coordination[J].Southern Power System Technology,2023,17(4):144-155.
[20]邵嗣杨,马翔,袁伟,等.含电动汽车的不确定性微电网鲁棒优化调度方法[J].电气工程学报,2023,18(2):201-209.SHAO Siyang,MA Xiang,YUAN Wei,et al. Robust optimal dispatching method for uncertain microgrid including electric vehicles[J]. Journal of Electrical Engineering,2023,18(2):201-209.
[21]彭春华,余愿,孙惠娟.基于源网荷协同优化的配电网光储联合系统规划[J].电网技术,2019,43(11):3944-3951.PENG Chunhua,YU Yuan,SUN Huijuan. Planning of combined PV-ESS system for distribution network based on source-networkload collaborative optimization[J]. Power System Technology,2019,43(11):3944-3951.
[22] CAI D F,WANG Z W,MIAO S H,et al.Wind-photovoltaic-energy storage system collaborative planning strategy considering the morphological evolution of the transmission and distribution network[J].Energies,2022,15(4):1481.
[23]陈明昊,孙毅,胡亚杰,等.基于纵向联邦强化学习的居民社区综合能源系统协同训练与优化管理方法[J].中国电机工程学报,2022,42(15):5535-5549.CHEN Minghao,SUN Yi,HU Yajie,et al. The collaborative training and management-optimized method for residential integrated energy system based on vertical federated reinforcement learning[J].Proceedings of the CSEE,2022,42(15):5535-5549.
[24]何欣,黄扬,王维洲,等.基于改进遗传算法的区域性光伏消纳优化策略研究[J].电子设计工程,2022,30(2):28-32.HE Xin,HUANG Yang,WANG Weizhou,et al. Research on optimal strategy of regional photovoltaic consumption based on improved genetic algorithm[J]. Electronic Design Engineering,2022,30(2):28-32.
[25]张子恒,吴定会,杨朝辉,等.基于改进差分进化算法的微网容量优化配置[J].控制工程,2023,30(1):90-97.ZHANG Ziheng,WU Dinghui,YANG Zhaohui,et al. Optimal configuration of microgrid capacity based on improved differential evolution algorithm[J]. Control Engineering of China,2023,30(1):90-97.
基本信息:
DOI:10.20097/j.cnki.issn1007-9904.2024.12.005
中图分类号:TM615
引用信息:
[1]关逸飞,王玥娇,刘奕元等.计及资源差异特性的分布式光伏与储能聚合运营优化方法[J].山东电力技术,2024,51(12):34-43.DOI:10.20097/j.cnki.issn1007-9904.2024.12.005.
基金信息:
国网山东省电力公司科技项目“面向分布式光伏消纳和主动支撑的储能运行和运营技术研究与应用”(520626230017)~~