nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 06, v.51 43-51
多配电台区柔性直流互联系统换流站定容技术研究
基金项目(Foundation): 国网山东省电力公司科技项目“提升高比例分布式能源消纳能力的多配电台区柔性互联与低碳运行技术研究及示范应用”(520626210010)~~
邮箱(Email):
DOI: 10.20097/j.cnki.issn1007-9904.2024.06.006
摘要:

换流站容量直接关系到柔性直流互联系统的可靠性与经济性。为解决多配电台区通过柔性直流技术实现互联后换流站容量配置问题,建立双层优化模型实现换流站优化定容。其中,内层优化模型以柔性直流互联系统收益、新能源消纳率最高为优化目标,对配电系统的功率互济调度策略进行优化得出系统功率互济最优策略;外层优化模型考虑内层模型给出的功率互济策略以及可靠性、经济性等约束条件,对换流站容载比进行优化,得出换流站最优容载比以及最优容量配置。采用智能优化算法即粒子群算法对优化模型进行迭代求解,以三端柔性直流互联系统为具体算例进行计算分析,结果验证了所提算法的有效性。

Abstract:

The converter station capacity is directly related to the reliability and economy of the flexible direct current(DC)interconnection system. In order to solve the capacity allocation problem of converter station after multi-distribution area is interconnected by flexible DC technology,a two-layer optimization model established to optimize the constant capacity of converter station.Taking the most benefits of the flexible DC interconnection system and the highest consumption of renewable energy as optimization object,the inner optimization model optimizes the power exchange scheduling strategy of the distribution system to obtain the optimal strategy of power exchange. Optimal mutual power support strategy given by inner model and constrain conditions such as reliability as well as economy are considered in outer model,so that optimal capacity-load ratio and the optimal capacity configuration of converter station can be obtained. The intelligent algorithm,such as particle swarm optimization algorithm,is used to solve the optimization model iteratively. Taking a three-terminal flexible and direct interconnection system as an example,the results prove the effectiveness of the method proposed in this paper.

参考文献

[1]马立民,文俊,王书杰,等.应用柔直技术改善220 kV分区电网性能的研究[J].电网与清洁能源,2021,37(10):83-90.MA Limin,WEN Jun,WANG Shujie,et al. A study on the application of VSC-HVDC to improve the performance of 220 kV partition grid[J].Power System and Clean Energy,2021,37(10):83-90.

[2]朱金华,何毅帆,高久国,等.配电网台区环保型设备电气性能研究[J].浙江电力,2022,41(12):46-53.ZHU Jinhua,HE Yifan,GAO Jiuguo,et al.Study of the electrical performance of eco-friendly equipment in a distribution transformer area[J].Zhejiang Electric Power,2022,41(12):46-53.

[3]侯瑞云.民用建筑配电变压器容量的选择[J].电力设备管理,2021(3):160-162.HOU Ruiyun.Selection of distribution transformer capacity for civil buildings[J]. Electric Power Equipment Management,2021(3):160-162.

[4]王贵宾,李庚宸,孙浩,等.基于卫星授时同步的高比例新能源配电台区自治控制研究[J].山东电力技术,2023,50(5):6-13.WANG Guibin,LI Gengchen,SUN Hao,et al. Research on autonomous control of distribution transformer supply zone with high proportion of renewable energy based on satellite-time synchronization[J].Shandong Electric Power,2023,50(5):6-13.

[5]谢典,高亚静,刘天阳,等.“双碳”目标下我国再电气化路径及综合影响研究[J].综合智慧能源,2022,44(3):1-8.XIE Dian,GAO Yajing,LIU Tianyang,et al.Study on the impact of re-electrification on the path to carbon peaking and carbon neutralization in China[J].Integrated Intelligent Energy,2022,44(3):1-8.

[6]姜淼,石勇,徐光福,等.大容量逆变型分布式电源接入对配电网单相接地检测的影响[J].浙江电力,2023,42(2):9-16.JIANG Miao,SHI Yong,XU Guangfu,et al.Analysis of the impact of large capacity IIDGs on single-phase grounding detection of distribution networks[J]. Zhejiang Electric Power,2023,42(2):9-16.

[7]李锰,王利利,陈鹏浩,等.一种直流配电网中换流站的选址定容方法[J].电力系统保护与控制,2020,48(21):109-116.LI Meng,WANG Lili,CHEN Penghao,et al.Method for selecting and setting the capacity of a converter station in a DC distribution network[J].Power System Protection and Control,2020,48(21):109-116.

[8]李宗翰,李庚银,周明,等.基于费马-韦伯问题的新能源接入系统选址定容综合优化方法[J].电网技术,2020,44(6):2118-2126.LI Zonghan,LI Gengyin,ZHOU Ming,et al. Comprehensive optimization method for location and capacity of new energy access system based on Fermat-weber problem[J]. Power System Technology,2020,44(6):2118-2126.

[9]惠飞翔.中压柔性直流环网控制装置选址定容技术研究[D].北京:华北电力大学(北京),2017.

[10]张振芳,撖奥洋,刘同同等.基于多策略改进SSA算法的分布式光伏选址定容规划[J/OL].电气工程学报:1-10.[2023-08-19].https://kns.cnki.net/kcms/detail/10.1289.TM.20230705.1840.004.html.ZHANG Zhenfang,HAN Aoyang,LIU Tongtong,et al. Optimal sizing and siting of distributed PV based on multi-strategy improved SSA algorithm[J/OL].Journal of Electrical Engineering:1-10.[2023-08-19].https://kns.cnki.net/kcms/detail/10.1289.TM.20230705.1840.004.html.

[11]刘柳,赵俊勇,马亮.基于改进蝴蝶算法的分布式光伏选址定容[J/OL].电力系统及其自动化学报:1-8.[2023-08-19].DOI:10.19635/j.cnki.csu-epsa.001243.LIU Liu,ZHAO Junyong,MA Liang. Locating and sizing of distributed photovoltaic generation based on improved butterfly optimization algorithm[J/OL].Proceedings of the CSU-EPSA:1-8.[2023-08-19].DOI:10.19635/j.cnki.csu-epsa.001243.

[12]陈巍,杨兵,朱益民.考虑机组功率因数的分布式风机选址定容研究[J].自动化技术与应用,2022,41(2):133-135.CHEN Wei,YANG Bing,ZHU Yimin. Research on locating and sizing of distributed wind generators considering unit power factor[J]. Techniques of Automation and Applications,2022,41(2):133-135.

[13]张铁峰,高智慧,左丽莉,等.分布式光伏接入配电网的选址定容优化研究[J].华北电力大学学报(自然科学版),2019,46(1):60-66.ZHANG Tiefeng,GAO Zhihui,ZUO Lili,et al. Research on location and capacity optimization of distributed photovoltaic generation connected to distribution network[J]. Journal of North China Electric Power University(Natural Science Edition),2019,46(1):60-66.

[14]吴雨,王育飞,张宇,等.基于改进免疫克隆选择算法的电动汽车充电站选址定容方法[J].电力系统自动化,2021,45(7):95-103.WU Yu,WANG Yufei,ZHANG Yu,et al.Siting and sizing method of electric vehicle charging station based on improved immune clonal selection algorithm[J]. Automation of Electric Power Systems,2021,45(7):95-103.

[15]郑重,苗世洪,张松岩,等.基于极限学习机的输配一体储能系统选址定容协同优化策略[J].电力自动化设备,2022,42(2):31-40.ZHENG Zhong, MIAO Shihong, ZHANG Songyan, et al.Collaborative optimization strategy for location and capacity determination of energy storage system considering transmission and distribution integration based on extreme learning machine[J].Electric Power Automation Equipment,2022,42(2):31-40.

[16]何晨可,韦钢,朱兰,等.电动汽车充换放储一体化电站选址定容[J].中国电机工程学报,2019,39(2):479-489.HE Chenke,WEI Gang,ZHU Lan,et al. Locating and sizing of electric vehicle Charging-swapping discharging-storage integrated station[J].Proceedings of the CSEE,2019,39(2):479-489.

[17] HAGHIFAM M R,SHAHABI M. Optimal location and sizing of HV/MV substations in uncertainty load environment using genetic algorithm[J]. Electric Power Systems Research,2002,63(1):37-50.

[18] YENCHAMCHALIT K,KONGJEEN Y,BHUMKITTIPICH K,et al.Optimal sizing and location of the charging station for plug-in electric vehicles using the particle swarm optimization technique[C]//2018 International Electrical Engineering Congress(iEECON)IEEE,2018:1-4.

[19] ABDELTAWAB H,MOHAMED Y A R I. Mobile energy storage sizing and allocation for multi-services in power distribution systems[J].IEEE Access,2019,7:176613-176623.

[20]邢朝旭.考虑柔性负荷的交直流混合微电网容量优化配置[D].秦皇岛:燕山大学,2022.

基本信息:

DOI:10.20097/j.cnki.issn1007-9904.2024.06.006

中图分类号:TM721.1

引用信息:

[1]刘洋,李立生,崔健等.多配电台区柔性直流互联系统换流站定容技术研究[J].山东电力技术,2024,51(06):43-51.DOI:10.20097/j.cnki.issn1007-9904.2024.06.006.

基金信息:

国网山东省电力公司科技项目“提升高比例分布式能源消纳能力的多配电台区柔性互联与低碳运行技术研究及示范应用”(520626210010)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文